Structural accelerated failure time models for survival analysis in studies with time-varying treatments.

نویسندگان

  • Miguel A Hernán
  • Stephen R Cole
  • Joseph Margolick
  • Mardge Cohen
  • James M Robins
چکیده

BACKGROUND In the absence of unmeasured confounding factors and model misspecification, standard methods for estimating the causal effect of time-varying treatments on survival are biased when (i) there exists a time-dependent risk factor for survival that also predicts subsequent treatment and (ii) past treatment history predicts subsequent risk factor level. In contrast, structural models provide consistent estimates of causal effects when unmeasured confounding and model misspecification are absent. The parameters of nested structural models are estimated by g-estimation and those of marginal structural models by inverse probability weighting. METHODS We describe a nested structural accelerated failure time model and use it to estimate the total causal effect of highly active antiretroviral therapy (HAART) on the time to AIDS or death among human immunodeficiency virus (HIV)-infected participants of the Multicenter AIDS Cohort and Women's Interagency HIV Studies. The Appendix describes g-estimation and methods to deal with censoring. RESULTS Comparing the regime 'always treated' to 'never treated,' the AIDS-free survival time ratio was 2.5 (95% confidence interval [CI]: 1.7, 3.3). CONCLUSIONS Our finding of a strongly beneficial effect is consistent with results from randomized trials and from a previous analysis of the same data using a marginal structural Cox model. In contrast, a previous analysis using a standard (non-structural) model did not find an effect of treatment on survival.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survival analysis of thalassemia major patients using Cox, Gompertz proportional hazard and Weibull accelerated failure time models

Background: Thalassemia major (TM) is a severe disease and the most common anemia worldwide. The survival time of the disease and its risk factors are of importance for physicians. The present study was conducted to apply the semi-parametric Cox PH model and use parametric proportional hazards (PH) and accelerated failure time (AFT) models to identify the risk factors related to survival of TM ...

متن کامل

Application of the Weibull Accelerated Failure Time Model in the Determination of Disease-Free Survival Rate of Patients with Breast Cancer

Background and Purpose: The goal of this study is application of the proportional hazards model (PH) and accelerated failure time model (AFT), with consideration Weibull distribution, to determine the level of effectiveness of the factors affecting on the level of disease-free survival (DFS) of the patients with breast cancer. Materials and Methods: Based on the retrospective descriptive stu...

متن کامل

Spatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients

In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...

متن کامل

Reliability Analysis of Three Elements Series and Parallel Systems under Time-varying Fuzzy Failure Rate

Reliability is the most important performance issue in the engineering design process but in the real world problems, there are limitations for using the conventional reliability. Fuzzy logic has proved to be effective in expressing uncertainties in different fields, including reliability engineering. In this paper, For both the series and parallel systems composed of three identical or differe...

متن کامل

Relation between three classes of structural models for the effect of a time-varying exposure on survival.

Standard methods for estimating the effect of a time-varying exposure on survival may be biased in the presence of time-dependent confounders themselves affected by prior exposure. This problem can be overcome by inverse probability weighted estimation of Marginal Structural Cox Models (Cox MSM), g-estimation of Structural Nested Accelerated Failure Time Models (SNAFTM) and g-estimation of Stru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pharmacoepidemiology and drug safety

دوره 14 7  شماره 

صفحات  -

تاریخ انتشار 2005